Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Infect Immun ; 92(2): e0052623, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38235972

RESUMO

Staphylococcus aureus is a gram-positive pathogen that poses a major health concern, in part due to its large array of virulence factors that allow infection and evasion of the immune system. One of these virulence factors is the bicomponent pore-forming leukocidin LukAB. The regulation of lukAB expression is not completely understood, especially in the presence of immune cells such as human polymorphonuclear neutrophils (hPMNs). Here, we screened for transcriptional regulators of lukAB during the infection of primary hPMNs. We uncovered that PerR, a peroxide sensor, is vital for hPMN-mediated induction of lukAB and that PerR upregulates cytotoxicity during the infection of hPMNs. Exposure of S. aureus to hydrogen peroxide (H2O2) alone also results in increased lukAB promoter activity, a phenotype dependent on PerR. Collectively, our data suggest that S. aureus uses PerR to sense the H2O2 produced by hPMNs to stimulate the expression of lukAB, allowing the bacteria to withstand these critical innate immune cells.IMPORTANCEStaphylococcus aureus utilizes a diverse set of virulence factors, such as leukocidins, to subvert human neutrophils, but how these toxins are regulated is incompletely defined. Here, we identified the peroxide-sensitive repressor, PerR, as a required protein involved in the induction of lukAB in the presence of primary human neutrophils, a phenotype directly linked to the ability of PerR to sense H2O2. Thus, we show that S. aureus coordinates sensing and resistance to oxidative stress with toxin production to promote pathogen survival.


Assuntos
Infecções Estafilocócicas , Staphylococcus aureus , Humanos , Neutrófilos , Peróxido de Hidrogênio/toxicidade , Peróxido de Hidrogênio/metabolismo , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Proteínas de Bactérias/metabolismo , Leucocidinas , Infecções Estafilocócicas/microbiologia
2.
Microbiol Spectr ; 11(6): e0165623, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37800956

RESUMO

IMPORTANCE: The leukocidins play an important role in disarming the host immune system and promoting infection. While both SarS and Rot have been established as repressors of leukocidins, the importance of each repressor in infection is unclear. Here, we demonstrate that repression by SarS and Rot is not additive and show that in addition to upregulating expression of each other, they are also able to bind concurrently to the leukocidin promoters. These findings suggest that both repressors are necessary for maximal repression of lukED and lukSF-PV and illuminate another complex relationship among Staphylococcus aureus virulence regulators.


Assuntos
Toxinas Bacterianas , Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Humanos , Staphylococcus aureus/metabolismo , Leucocidinas/genética , Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Exotoxinas/genética , Exotoxinas/metabolismo , Staphylococcus aureus Resistente à Meticilina/metabolismo
3.
Immunity ; 56(6): 1255-1268.e5, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37059107

RESUMO

In early life, susceptibility to invasive infection skews toward a small subset of microbes, whereas other pathogens associated with diseases later in life, including Streptococcus pneumoniae (Spn), are uncommon among neonates. To delineate mechanisms behind age-dependent susceptibility, we compared age-specific mouse models of invasive Spn infection. We show enhanced CD11b-dependent opsonophagocytosis by neonatal neutrophils improved protection against Spn during early life. The augmented function of neonatal neutrophils was mediated by higher CD11b surface expression at the population level due to dampened efferocytosis, which also resulted in more CD11bhi "aged" neutrophils in peripheral blood. Dampened efferocytosis during early life could be attributed to the lack of CD169+ macrophages in neonates and reduced systemic expressions of multiple efferocytic mediators, including MerTK. On experimentally impairing efferocytosis later in life, CD11bhi neutrophils increased and protection against Spn improved. Our findings reveal how age-dependent differences in efferocytosis determine infection outcome through the modulation of CD11b-driven opsonophagocytosis and immunity.


Assuntos
Neutrófilos , Fagocitose , Camundongos , Animais , Humanos , Macrófagos/metabolismo , Streptococcus pneumoniae , c-Mer Tirosina Quinase
4.
Infect Immun ; 91(4): e0053222, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-36939325

RESUMO

Staphylococcus aureus is a successful pathogen that produces a wide range of virulence factors that it uses to subvert and suppress the immune system. These include the bicomponent pore-forming leukocidins. How the expression of these toxins is regulated is not completely understood. Here, we describe a screen to identify transcription factors involved in the regulation of leukocidins. The most prominent discovery from this screen is that SarS, a known transcription factor which had previously been described as a repressor of alpha-toxin expression, was found to be a potent repressor of leukocidins LukED and LukSF-PV. We found that inactivating sarS resulted in increased virulence both in an ex vivo model using primary human neutrophils and in an in vivo infection model in mice. Further experimentation revealed that SarS represses leukocidins by serving as an activator of Rot, a critical repressor of toxins, as well as by directly binding and repressing the leukocidin promoters. By studying contemporary clinical isolates, we identified naturally occurring mutations in the sarS promoter that resulted in overexpression of sarS and increased repression of leukocidins in USA300 bloodstream clinical isolates. Overall, these data establish SarS as an important repressor of leukocidins and expand our understanding of how these virulence factors are being regulated in vitro and in vivo by S. aureus.


Assuntos
Infecções Estafilocócicas , Staphylococcus aureus , Animais , Humanos , Camundongos , Exotoxinas/genética , Exotoxinas/metabolismo , Leucocidinas/genética , Neutrófilos , Fatores de Transcrição/metabolismo , Fatores de Virulência/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...